Best Quadratic Spline Approximation

نویسندگان

  • D. F. Wiley
  • H. R. Childs
  • B. Hamann
  • K. I. Joy
چکیده

We present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approximations that are C0-continuous everywhere. We adaptively refine a simplicial approximation by identifying and bisecting simplicial elements with largest errors. It is possible to store multiple approximation levels of increasing quality. We have tested the suitability and efficiency of our hierarchical data approximation scheme by applying it to several data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using quadratic simplicial elements for hierarchical approximation and visualization

Best quadratic simplicial spline approximations can be computed, using quadratic Bernstein-Bézier basis functions, by identifying and bisecting simplicial elements with largest errors. Our method begins with an initial triangulation of the domain; a best quadratic spline approximation is computed; errors are computed for all simplices; and simplices of maximal error are subdivided. This process...

متن کامل

On Curved Simplicial Elements and Best Quadratic Spline Approximation for Hierarchical Data Representation

We present a method for hierarchical data approximation using curved quadratic simplicial elements for domain decomposition. Scientific data defined over twoor three-dimensional domains typically contain boundaries and discontinuities that are to be preserved and approximated well for data analysis and visualization. Curved simplicial elements make possible a better representation of curved geo...

متن کامل

Optimal Spline Approximation via ℓ0-Minimization

Splines are part of the standard toolbox for the approximation of functions and curves in Rd . Still, the problem of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a “spline” with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be ...

متن کامل

Quadratic Spline Quasi - Interpolants on Bounded Domains

We study some C1 quadratic spline quasi-interpolants on bounded domains  ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain  and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...

متن کامل

Constrain Control of Trigonometric Rational Quadratic Spline with Shape Parameters Based on Function Values

The aim of this paper presents an analysis of weighted quadratic trigonometric spline with two shape parameters which interpolate on function value. This interpolating is C continuous with quadratic denominator. Constrain control of this rational quadratic trigonometric spline is derived which force it be bound in the given region. Approximation property is discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002